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In the present paper, we have studied the dynamics of two spatially separated screening optical solitons in photorefractive-
photovoltaic materials incorporating higher order diffusion phenomenon. We have employed paraxial ray approximation 
method to derive evolution equations of different parameters which characterize the dynamics of two interacting soliton. 
This approach yields a system of coupled ordinary differential equations for evaluation of solitons parameters such as 
spatial width and centre of gravity, and subsequently employed numerical method to extract information on their dynamics. 
Oscillatory stationary bound states predicted, though no stable composite bound state exists.  
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1. Introduction 
 

During last three decades, optical solitons have been 

extensively studied [1-19] topic not only due to their 

mathematical elegance and but also due to the possibility 

of applications. They are self guided waves and are able to 

maintain their shape while propagating.  These solitons are 

characterized as spatial, temporal or spatio-temporal 

depending on their localization in space, time or both in 

space and time.  Spatial solitons are non-diffracting optical 

beams which maintain their shape owing to the 

cancellation of diffraction by the optical nonlinearity of 

the medium in which they are propagating. Though 

solitons have been detected in almost all branches of 

physics, spatial photorefractive solitons possesses some 

unique properties which make them attractive in several 

applications such as all optical switching and routing, 

interconnects [2-4].   

To date, three different types of steady state 

photorefractive solitons have been predicted. 

Photorefractive screening solitons is the one which was 

identified first. In the steady state, both bright and dark 

screening solitons (SS) are possible when an external bias 

voltage is appropriately applied to a non-photovoltaic 

photorefractive crystal [20-22]. The second kind is the 

photovoltaic soliton [23-24], the formation of which 

however requires an unbiased PR crystal that exhibits 

photovoltaic effect.  The third type of photorefractive 

soliton arises when an electric field is applied to a 

photovoltaic photorefractive crystal [25, 26]. These 

solitons owe their existence to both photovoltaic effect and 

spatially non-uniform screening of the applied field and 

are also known as screening photovoltaic (SP) soliton.  

In a photorefractive crystal, both   drift and diffusion 

processes are responsible for the creation of space charge 

field.  This space charge field is responsible for the change 

in refractive index of the crystal which in turn is 

responsible for the formation of soliton.   When biasing 

field is strong, the diffusion process does not contribute 

significantly to the formation of solitons. Several authors, 

however, have studied soliton dynamics incorporating 

diffusion process, albeit with approximation [27, 28]. In 

this paper we study the existence of  bright  screening 

photovoltaic spatial  solitons  through  photorefractive 

crystals incorporating higher order diffusion processes  

and  also obtain the  equation  for  the  trajectory  of  the  

soliton.  The arrangement of the paper is as follows: The  

mathematical  model  for  soliton  propagation  has  been  

formulated  and  developed  in  Section  2. Section 3 

includes the results and discussions.  A brief conclusion 

has been presented in Section 4. 

 

  

2. Mathematical model 
 

To start with, we consider a pair of optical beams 

which are propagating in a biased photorefractive-

photovoltaic crystal along z-direction. They are of same 

frequency but mutually incoherent. The crystal is taken to 

be LiNbO3 with its optical c-axis oriented along the x 

coordinate. The two optical beams are allowed to diffract 

only along the x-direction and for the sake of simplicity 

the photorefractive crystal is assumed to be loss less. We 

assume that the incident soliton forming optical beams are 

polarized along the x direction. The optical fields of two 

soliton forming optical beams are expressed  
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can be readily shown that [6] the slowly varying 

envelopes of two interacting spatial solitons inside 

the photovoltaic PR crystal are governed by the 

following evolution equations: 
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Where, 33r  is the electro-optic coefficient, and 

SCE is the space charge field which perturbs the 

refractive index through the Pockel’s effect. For 

convenience, we transform envelope equations into 

normalized equations by the following 

substitutions:  
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The induced space charge field  SCE   can be 

obtained from the standard set of rate and 

continuity equations and Gauss’s law, which turns 

out to be [29]: 
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where   S C OE  is  the first  order of SCE  ,  

),( zxII   is the intensity of the optical beam, dI

is the so-called dark irradiance, AN  is the  

acceptor density, 0E  is the  strength of bias field , 


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e

Nk
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ARp

p   is the photovoltaic filed constant, 

R  is  the carrier recombination rate,   and e  are, 

respectively, the electron mobility and the charge, 

pk  is the photovoltaic constant, BK  is  

Boltzmann's  constant, T  is the absolute  

temperature, 
0  is the free space permittivity,  

and r  as the relative static dielectric constant. 
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than unity, this condition fulfills  in typical 

photovoltaic photorefractive  media if power 

density ),( zxI of the optical beam varies slowly  

with respect of x .  

To study the effects those arise from higher 

order terms such as 
x
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 in Eq. (4), we 

now use  0SCE   as the first order in SCE   and 

expand SCE   with terms of first and higher orders.   

Therefore, the perturbative solution of the space 

charge field   SCE   reads as follows:  
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 It is important to note that Eq. (6) is valid as 

long as the perturbations E  and  E
i
 

)4,3,2,1( i  are much smaller than the leading 

terms of the space charge field 0SCE . We can now 

establish the envelope evolution equation by 

substituting the expression for the perturbed 

refractive index into the paraxial wave   equation. 

After appropriate normalizations and neglecting 

the crystal loss, the envelopes 1U and 2U  are then 

found to obey the following dynamical evolution 

equations:  
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;   is  the first order diffusion terms, 1   and 2  

are the higher  order odd perturbations terms, 

which will have odd effect (such as beam 

deflection) as   does;  3  and 4  are the higher  

order even perturbation terms, which produce even 

effects such as spatial broadening. The sings of 1  

and 2 are determined by the polarity of bias field 

0E and photovoltaic field pE , respectively, 

whereas 1  , 3  and 4   are always  positive. 

The sign of pE depends on the characteristics of 

the crystal and the polarization of the light.  

Equations (8) and (9) are non-integrable, and 

their exact solutions cannot be obtained. In order to 

solve such non-integrable equations, various 

approximation methods have been devised, such as 

Anderson's variation method [30], the moment 

method of Vlasov [31] and the paraxial method of 

Akhmanov [32, 33]. In the present investigation, 
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we employ the paraxial method of Akhmanov to 

get the solution for the dynamical equations (8) 

and (9) in the PR medium. We start the following 

ansatz for the slowly varying envelopes: 
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We look for a self-similar bright spatial soliton solution 

for which the field energy is confined in the central region 

of the beam, thus we take  
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power  of these solitons.  0r  is a positive constant,  1f  
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Substituting equations (13) to (15) in equation (12) and 

equating coefficient of different powers of   s , we obtain 

following dynamical equations:  
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Where, 
2
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2

001

P
UU   is the peak power of  the  

soliton. Equation (17) and (18)  describe the evolution  of 

the beam width of the  soliton in the biased PR crystal 

characterized by the  system parameter  3,,  and 4 . 

Note the absence of system parameters 1,  and 2  in 

equations (17) and (18), these higher order space charge 

effect and diffusion phenomena do not play any role in the 

formation of bight spatial soliton. Equations (19) and (20) 

govern the dynamics of the soliton centre, which are 

controlled by  1,  and 2 .  An important feature to note 

is the decoupling of equations (17) and (18) from 

equations (19) and (20), thus the portion of the beam 

center does not neither influence the formation of solitons 

nor their shape. 

 

 

3. Results and discussion 
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, where  we have 

introduced the simplification 2/021 PPP  . The 

variation of beam radius with power for stationary solitons 

is shown in Fig. 1, where without any loss of generality we 

have assumed 1)()( 21   ff . Any point which lies 

in any curve of Fig. 1, signifies the existence of stationary 

soliton with given power 0P . In order to examine the 

stability of these solitons, we have examined their 

behavior while they propagate in the crystal. Fig. 2 shows 

the variation of beam widths of two solitons while they 

propagate. As expected, )(1 f  and )(2 f  remains 

constant signifying stationary propagation. In Fig. 3, we 

have displayed variation of beam width with distance of 

propagation when the power of each beam is less than the 

threshold power required for stationary propagation. It is 

seen that the two soliton forming optical beams defocuses 

first, then focuses and again defocuses. However, the 

beam width always remains greater than or equal to the 

initial beam width. Fig. 4 depicts the variation of beam 

widths when the power of each beam is more than the 

threshold power. It is clearly evident from the figure that 

the normalized beam width, though oscillates, always 

remain less than unity. We now turn our attention to the 

centers of two solitons while they propagate along the 

crystals. Equations (17) and (18) are decoupled from 

equations (19) and (20), signifying the fact that the 

evolution of the beam centers do not depend on the 

formation of solitons. In Fig. 5 we have displayed 

movement of two beam centers inside the crystal. It is 

evident that their separation initially increases, then 

decreases and again increases. This process repeats 

periodically as two solitons propagate along the crystal. 

 

 
Fig. 1.  Existence   curve of stationary solitons. 
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Fig. 2. Variation of  normalized beam width 

  ( )            ( ) with propagation distance of two 

solitons. Constant    ( )            ( ) signifies stationary  

                 propagation.                    .   

 

 
Fig. 3. Variation of normalized beam width 

  ( )            ( ) with propagation distance when the 

power of each beam is less than the threshold power 

(    )        required       for       stationary     propagation.   

                                       (   ) .  
 

 
Fig. 4. Variation of normalized beam width 

  ( )            ( ) with propagation distance when the 

power of each beam is more than the threshold power 

(    )      required         for       stationary     propagation.  

                                       (   ) .  

 
 

Fig. 5.  Locations of the centers of two solitons with  

propagation distance.                       
 

 

4. Conclusion 
 

We have investigated the bright screening 

photorefractive-photovoltaic solitons incorporating higher 

order space charge fields. We have found out the threshold 

power and beam widths for these solitons. We have plotted 

the existence curve of these solitons. The focusing and 

defocusing behavior of these solitons have been 

investigated. The movement of the centers of these 

solitons has been also investigated. 
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